Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.165
Filtrar
Más filtros

Intervalo de año de publicación
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(2): 166-171, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38442933

RESUMEN

OBJECTIVE: To investigate the protective effect of Xuebijing injection on acute lung injury (ALI) associated with cardiopulmonary bypass (CPB) by regulating the apoptosis of polymorphonuclear neutrophils (PMN). METHODS: Thirty male Sprague-Dawley (SD) rats were randomly divided into sham operation group (Sham group), CPB model group (CPB group) and Xuebijing pretreatment group (XBJ group) according to the random number table method, with 10 rats in each group. Rats in the CPB group and XBJ group undergoing CPB procedures for 60 minutes. Rats in the Sham group did not undergo CPB. Rats in the XBJ group received intraperitoneal injection of 4 mL/kg Xuebijing injection 2 hours before CPB. Rats in the Sham group and CPB group were injected with an equal amount of normal saline. 4 hours after CPB, arterial blood was collected for blood gas analysis to calculate respiratory index (RI), and lung tissue of rats was collected for determination of lung index (LI) and pulmonary water containing rate. PMN in bronchoalveolar lavage fluid (BALF) were collected and the activity of caspase-3 was detected. The apoptosis rate was detected by flow cytometry. The expressions of microRNA-142-3p (miR-142-3p) and FoxO1 mRNA were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). The protein expression of FoxO1 was detected by Western blotting. In addition, HL-60 cells were divided into control oligonucleotide transfection group, miR-142-3p mimics transfection group, and miR-142-3p inhibitor transfection group. After 48 hours of transfection, the activity of miR-142-3p binding to FoxO1 was detected using dual luciferase reporter genes. RESULTS: Compared with Sham group, RI, LI and pulmonary water containing rate were significantly increased in CPB group. The caspase-3 activity and apoptosis rate of PMN obtained from BALF were significantly decreased, the expression of miR-142-3p was decreased, and the expression of FoxO1 protein was increased. However, compared with CPB group, RI, LI and pulmonary water containing rate were significantly decreased in XBJ group [RI: 0.281±0.066 vs. 0.379±0.071, LI: 4.50±0.26 vs. 5.71±0.42, pulmonary water containing rate: (80.31±32.50)% vs. (84.59±3.41)%, all P < 0.01]. The caspase-3 activity and apoptosis rate of PMN obtained from BALF were significantly increased [caspase-3 activity: 0.350±0.021 vs. 0.210±0.014, apoptosis rate: (15.490±1.382)% vs. (8.700±0.701)%, both P < 0.01], the expression of miR-142-3p was significantly up-regulated (2-ΔΔCt: 2.61±0.17 vs. 0.62±0.05, P < 0.01), and the protein expression of FoxO1 was decreased [FoxO1/GAPDH (relative expression level): 0.81±0.04 vs. 1.22±0.06, P < 0.01]. However, there was no statistically significant difference in FoxO1 mRNA expression among the three groups. The bioinformatics analysis results showed that miR-142-3p can bind to the FoxO1 3'untranslated region (3'UTR). In HL-60 cells, compared with control oligonucleotide transfection group, the transfection of miR-142-3p mimics could reduce the expression of FoxO1 protein [FoxO1/GAPDH (relative expression level): 0.48±0.06 vs. 1.00±0.05, P < 0.01], however, the transfection of miR-142-3p inhibitor increased the expression of FoxO1 protein [FoxO1/GAPDH (relative expression level): 1.37±0.21 vs. 1.00±0.05, P < 0.05]. But, transfection with miR-142-3p mimics or inhibitor had no effect on FoxO1 mRNA expression. The luciferase reporter gene showed that miR-142-3p could bind to the FoxO1 3'UTR to inhibit FoxO1 expression. CONCLUSIONS: Xuebijing injection may promote the apoptosis of pulmonary alveolar PMN through the miR-142-3p/FoxO1 axis, and play a role in the prevention and treatment of CPB-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , MicroARNs , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Puente Cardiopulmonar/efectos adversos , Neutrófilos , Caspasa 3 , Proteína Forkhead Box O1 , Regiones no Traducidas 3' , Luciferasas , Oligonucleótidos , Agua
2.
Sci Rep ; 14(1): 5829, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461158

RESUMEN

Plants represents a huge source of bioactive materials that have been used since the old times in the treatment of many diseases. Balanites aegyptiaca, known as desert date, has been used in treatment of fever, diabetes and bacterial infection. Desert dates contains a hard seed that resembles 50-60% of the fruit. The seed extract contains many fatty acids, amino acids and other bioactive materials that gives the extract its antioxidant and anti-inflammatory properties. The study aimed to use Balanites seed extract-loaded chitosan nanoparticles (SeEx-C NPs) for the treatment of streptozotocin (STZ)-induced diabetes in male Sprague Dawley rats. Animals were divided into two main divisions (healthy and diabetic rats). Each division contained seven groups (5 rats/group): control untreated group I, SeEx treated group II and group III (10 and 20 mg/kg b.w., respectively), C NPs treated group IV and group V (10 and 20 mg/kg b.w., respectively) and SeEx-C NPs treated group VI and group VII (10 and 20 mg/kg b.w., respectively). The therapeutical effects of SeEx-C NPs were evaluated through biochemical and immunological assessments in rats' pancreases. The results showed that SeEx-C NPs (10 and 20 mg/kg b.w.) reduced the oxidative stress and inflammation in rats' pancreases allowing the islets neogenesis. The loading of SeEx on C NPs allowed the delivery of fatty acids (oleic, lauric and myristic acid), amino acids (lysine, leucine, phenylalanine and valine) and minerals to pancreatic beta-cells in a sustainable manner. SeEx-C NPs administration successfully increased insulin secretion, allowed pancreatic islets neogenesis and reduced oxidative stress and inflammation.


Asunto(s)
Quitosano , Diabetes Mellitus Experimental , Hiperglucemia , Nanopartículas , Ratas , Animales , Insulina/metabolismo , Quitosano/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas Sprague-Dawley , Estrés Oxidativo , Semillas/metabolismo , Inflamación/tratamiento farmacológico , Nanopartículas/química
3.
Cell Physiol Biochem ; 58(1): 83-103, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38459804

RESUMEN

BACKGROUND/AIMS: Unrestricted increased table salt (NaCl) intake is associated with oxidative stress and inflammation, leading to endothelial dysfunction and atherosclerosis. However, data on salt-induced immunomodulatory effects in the earliest phase of salt loading are scarce. METHODS: In the present study, an animal model of short-term salt loading was employed, including male Sprague Dawley rats consuming a high-salt diet (HSD; 4% NaCl) or standard laboratory chow (low-salt; LSD; 0.4% NaCl) during a 7-day period. The contribution of angiotensin II (ANGII) suppression was tested by adding a group of rats on a high-salt diet receiving ANGII infusions. Samples of peripheral blood/mesenteric lymph node leukocytes, brain blood vessels, and serum samples were processed for flow cytometry, quantitative real-time PCR, total proteome analysis, and multiplex immunoassay. RESULTS: Data analysis revealed the up-regulation of Il 6 gene in the microcirculation of high-salt-fed rats, accompanied by an increased serum level of TNF-alpha cytokine. The high-salt diet resulted in increased proportion of serum mono-unsaturated fatty acids and saturated fatty acids, reduced levels of linoleic (C18:2 ω-6) and α-linolenic (C18:3 ω-3) acid, and increased levels of palmitoleic acid (C16:1 ω-7). The high-salt diet had distinct, lymphoid compartment-specific effects on leukocyte subpopulations, which could be attributed to the increased expression of salt-sensitive SGK-1 kinase. Complete proteome analysis revealed high-salt-diet-induced vascular tissue remodeling and perturbations in energy metabolism. Interestingly, many of the observed effects were reversed by ANGII supplementation. CONCLUSION: Low-grade systemic inflammation induced by a HSD could be related to suppressed ANGII levels. The effects of HSD involved changes in Th17 and Treg cell distribution, vascular wall remodeling, and a shift in lipid and arachidonic acid metabolism.


Asunto(s)
Cloruro de Sodio Dietético , Cloruro de Sodio , Ratas , Masculino , Animales , Cloruro de Sodio/farmacología , Ratas Sprague-Dawley , Linfocitos T Reguladores , Ácidos Grasos , Proteoma , Angiotensina II/farmacología , Inflamación , Dieta
4.
PLoS One ; 19(3): e0295381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38466676

RESUMEN

The objective is to investigate the healing efficacy of a Chromolaena odorata layered-nitrile rubber transdermal patch on excision wound healing in rats. Wounds were induced in Sprague-Dawley rats and were later treated as follows: wound A, the negative control, received no treatment (NC); wound B, the negative control with an empty nitrile rubber patch (NC-ERP); wound C, treated with a C. odorata layered-nitrile rubber patch (CO-NRP); and wound D, the positive control with Solcoseryl gel with a nitrile rubber patch (PC-SG-NRP). After 1, 3, 6, 10, and 14 days, the rats were sacrificed and analyzed for wound contraction, protein content, hexosamine, and uronic acid levels. Macroscopic observation showed enhanced wound healing in wounds treated with CO-NRP with a wound contraction percentage significantly higher (p<0.05) on days 6 and 10 compared to those treated with NC-ERP. Similarly, protein, hexosamine, and uronic acid contents were also significantly higher (p<0.05) in CO-NRP-treated wounds when compared with wounds treated with NC-ERP. Histological findings showed denser collagen deposition and faster granulation tissue formation in wounds treated with CO-NRP. From the results obtained, it is concluded that the C. odorata layered-nitrile rubber transdermal patch was effective in healing skin wounds.


Asunto(s)
Chromolaena , Goma , Ratas , Animales , Goma/metabolismo , Polímeros/metabolismo , Parche Transdérmico , Ratas Sprague-Dawley , Extractos Vegetales/farmacología , Cicatrización de Heridas , Piel/metabolismo , Colágeno/metabolismo , Ácidos Urónicos , Hexosaminas
5.
Zhongguo Zhen Jiu ; 44(3): 283-294, 2024 Mar 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38467503

RESUMEN

OBJECTIVES: To observe the effects of moxibustion on colonic mast cell degranulation and inflammatory factor expression in rats with diarrhea-predominant irritable bowel syndrome (IBS-D), and explore the potential mechanism of moxibustion in treating IBS-D. METHODS: Forty-five rat pups born from 5 healthy SPF-grade pregnant SD rats, with 8 rats were randomly selected as the normal group. The remaining 37 rats were intervened with maternal separation, acetic acid enema, and chronic restraint stress to establish the IBS-D model. The successfully modeled 32 rats were then randomly assigned to a model group, a ketotifen group, a moxibustion group, and a moxibustion-medication group, with 8 rats in each group. The rats in the ketotifen group were intervened with intragastric administration of ketotifen solution (10 mL/kg); the rats in the moxibustion group were intervened with suspended moxibustion on bilateral "Tianshu" (ST 25) and "Shangjuxu" (ST 37); the rats in the moxibustion-medication group were intervened with suspended moxibustion combined with intragastric administration of ketotifen solution. All interventions were administered once daily for 7 consecutive days. The diarrhea rate and minimum volume threshold of abdominal withdrawal reflex (AWR) were calculated before and after modeling, as well as after intervention. After intervention, colonic tissue morphology was observed using HE staining; colonic mucosal ultrastructure was examined by scanning electron microscopy; colonic mast cell ultrastructure was observed using transmission electron microscopy; mast cell degranulation was assessed by toluidine blue staining; serum and colonic levels of histamine, interleukin (IL)-1ß, IL-6, IL-1α, trypsin-like enzyme, and protease-activated receptor 2 (PAR-2) were measured by ELISA; the Western blot and real-time quantitative PCR were employed to evaluate the protein and mRNA expression of colonic IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2; the immunofluorescence was used to detect the positive expression of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 in the colonic tissue. RESULTS: Compared to the normal group, the rats in the model group exhibited extensive infiltration of inflammatory cells in colonic tissue, severe damage to the colonic mucosa, disordered arrangement of villi, reduced electron density, and a significant decrease in granule quantity within mast cells. The diarrhea rate and mast cell degranulation rate were increased (P<0.01), AWR minimum volume threshold was decreased (P<0.01); the serum and colonic levels of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 were elevated (P<0.01); the positive expression of histamine, as well as protein, mRNA and positive expression of IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 in the colon were all elevated (P<0.01). Compared to the model group, the rats in the ketotifen group, the moxibustion group, and the moxibustion-medication group exhibited significantly reduced infiltration of inflammatory cells in colonic tissue, relatively intact colonic mucosa, orderly arranged villi, increased electron density, and an augmented number of mast cell granules; the diarrhea rate and mast cell degranulation rate were decreased (P<0.01), and AWR minimum volume threshold was increased (P<0.01); the serum and colonic levels of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 were reduced (P<0.01); the positive expression of histamine, as well as protein, mRNA and positive expression of IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 in the colon were all decreased (P<0.01). Compared to the ketotifen group, the moxibustion group showed decreased serum levels of histamine, IL-6, and trypsin-like enzyme (P<0.01, P<0.05), as well as reduced colonic levels of IL-1ß and IL-6 (P<0.01, P<0.05); the protein expression of colonic IL-1ß, IL-1α, and PAR-2 was reduced (P<0.05), and the positive expression of colonic IL-1ß and trypsin-like enzyme was reduced (P<0.01, P<0.05). Compared to both the ketotifen group and the moxibustion group, the moxibustion-medication group exhibited decreased diarrhea rate and mast cell degranulation rate (P<0.01), an increased AWR minimum volume threshold (P<0.01), reduced serum and colonic levels of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 (P<0.01), decreased protein expression of colonic IL-1ß, trypsin-like enzyme, and PAR-2 (P<0.01, P<0.05), reduced mRNA and positive expression of colonic IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 (P<0.01, P<0.05), and decreased positive expression of colonic histamine (P<0.01). CONCLUSIONS: Moxibustion on "Tianshu" (ST 25) and "Shangjuxu" (ST 37) might inhibit low-grade inflammatory reactions in the colon of IBS-D model rats. The mechanism may be related to the inhibition of histamine and trypsin-like enzyme secreted by mast cell, thereby reducing the expression of related inflammatory factors.


Asunto(s)
Síndrome del Colon Irritable , Moxibustión , Ratas , Animales , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/terapia , Ratas Sprague-Dawley , Mastocitos/metabolismo , Tripsina , Degranulación de la Célula , Histamina , Interleucina-6 , Cetotifen , Privación Materna , Diarrea/etiología , Diarrea/terapia , ARN Mensajero
6.
Zhongguo Zhen Jiu ; 44(3): 303-308, 2024 Mar 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38467505

RESUMEN

OBJECTIVES: To observe the effects of moxibustion at "Zusanli"(ST 36)on oxidative stress and intestinal flora in subacute aging rats, and to explore the possible mechanism of moxibustion in delaying aging. METHODS: Thirty SD rats were randomly divided into a blank group, a model group and a Zusanli group, with 10 rats in each group. Subacute aging model was established by intraperitoneal injection of D-galactose at dosage of 500 mg/kg in the model group and the Zusanli group, once a day for 42 days. In the Zusanli group, moxibustion was applied at bilateral "Zusanli" (ST 36) , once a day, 3 moxa cones at each acupoint, for consecutive 28 days. After intervention, the serum levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by ELISA; the intestinal flora was detected by 16S rRNA sequencing technique in each group. RESULTS: Compared with the blank group, the serum level of SOD was decreased (P<0.01), the serum level of MDA was increased (P<0.01) in the model group. Compared with the model group, the serum level of SOD was increased (P<0.01), the serum level of MDA was decreased (P<0.01) in the Zusanli group. Compared with the blank group, Chao1 and Shannon indexes were decreased in the model group (P<0.01, P<0.05). Compared with the model group, Chao1 and Shannon indexes were increased in the Zusanli group (P<0.01, P<0.05). Compared with the blank group, the relative abundance of Firmicutes, Treponema_2 and Lachnospiraceae_NK4A136_group was increased (P<0.05, P<0.01), while the relative abundance of Prevotellaceae_UCG-003 and the relative abundance ratio of Bacteroidetes and Firmicutes (B/F value) were decreased (P<0.01, P<0.05) in the model group. Compared with the model group, the relative abundance of Firmicutes and Treponema_2 was decreased (P<0.01), while the relative abundance of Bacteroidetes, Lactobacillus, Prevotellaceae_UCG-003 and B/F value were increased (P<0.05, P<0.01) in the Zusanli group. CONCLUSIONS: Moxibustion at "Zusanli"(ST 36)can effectively improve the level of oxidative stress, regulate the constitution of intestinal flora, maintain the microecological balance of intestinal flora in aging rats, and thus play a role in delaying aging.


Asunto(s)
Microbioma Gastrointestinal , Moxibustión , Ratas , Animales , Moxibustión/métodos , Ratas Sprague-Dawley , ARN Ribosómico 16S , Estrés Oxidativo , Envejecimiento , Puntos de Acupuntura , Superóxido Dismutasa/genética
7.
J Orthop Surg Res ; 19(1): 178, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468339

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint disease characterized by persistent articular cartilage degeneration and synovitis. Oxymatrine (OMT) is a quinzolazine alkaloid extracted from the traditional Chinese medicine, matrine, and possesses anti-inflammatory properties that may help regulate the pathogenesis of OA; however, its mechanism has not been elucidated. This study aimed to investigate the effects of OMT on interleukin-1ß (IL-1ß)-induced damage and the potential mechanisms of action. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. Toluidine blue and Collagen II immunofluorescence staining were used to determine the purity of the chondrocytes. Thereafter, the chondrocytes were subjected to IL-1ß stimulation, both in the presence and absence of OMT, or the autophagy inhibitor 3-methyladenine (3-MA). Cell viability was assessed using the MTT assay and SYTOX Green staining. Additionally, flow cytometry was used to determine cell apoptosis rate and reactive oxygen species (ROS) levels. The protein levels of AKT, mTOR, LC3, P62, matrix metalloproteinase-13, and collagen II were quantitatively analyzed using western blotting. Immunofluorescence was used to assess LC3 expression. RESULTS: OMT alleviated IL-1ß-induced damage in chondrocytes, by increasing the survival rate, reducing the apoptosis rates of chondrocytes, and preventing the degradation of the cartilage matrix. In addition, OMT decreased the ROS levels and inhibited the AKT/mTOR signaling pathway while promoting autophagy in IL-1ß treated chondrocytes. However, the effectiveness of OMT in improving chondrocyte viability under IL-1ß treatment was limited when autophagy was inhibited by 3-MA. CONCLUSIONS: OMT decreases oxidative stress and inhibits the AKT/mTOR signaling pathway to enhance autophagy, thus inhibiting IL-1ß-induced damage. Therefore, OMT may be a novel and effective therapeutic agent for the clinical treatment of OA.


Asunto(s)
Alcaloides , Cartílago Articular , Matrinas , Osteoartritis , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Condrocitos/metabolismo , Interleucina-1beta/toxicidad , Interleucina-1beta/metabolismo , Osteoartritis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Cartílago Articular/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/metabolismo , Autofagia , Colágeno/metabolismo , Apoptosis
8.
Neurorehabil Neural Repair ; 38(5): 350-363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491852

RESUMEN

BACKGROUND: Yi-Qi-Tong-Luo Granules (YQTLs) is a natural compound of Traditional Chinese Medicine authorized by China Food and Drug Administration (CFDA). These granules are employed in the convalescent stage of cerebral infarction and render notable clinical efficacy. This study aims to uncover the underlying mechanisms of YQTLs on remyelination after cerebral ischemia injury. MATERIALS AND METHODS: We established cerebral ischemia model in rats using microsphere-induced multiple cerebral infarction (MCI). We evaluated the pharmacological effects of YQTLs on MCI rats, through Morri's water maze test, open field test, hematoxylin and eosin staining, and glycine silver immersion. We employed liquid chromatography mass spectrometry metabolomics to identify differential metabolites. Enzyme-linked immunosorbent assay was utilized to measure the release of neurotrophins, while immunofluorescence staining was used to assess oligodendrocyte precursor cells differences and myelin regeneration. We used Western blotting to validate the protein expression of remyelination-associated signaling pathways. RESULTS: YQTLs significantly improves cognitive function following cerebral ischemia injury. Pathological tissue staining revealed that YQTLs administration inhibits neuronal denaturation and neurofibrillary tangles. We identified 141 differential metabolites among the sham, MCI, and YQTLs-treated MCI groups. Among these metabolites, neurotransmitters were identified, and notably, gamma-aminobutyric acid (GABA) showed marked improvement in the YQTLs group. The induction of neurotrophins, such as brain-derived neurotrophic factor (BDNF) and PDGFAA, upregulation of olig2 and MBP expression, and promotion of remyelination were evident in YQTLs-treated MCI groups. Gamma-aminobutyric acid B receptors (GABABR), pERK/extracellular regulated MAP kinase, pAKT/protein kinase B, and pCREB/cAMP response element-binding were upregulated following YQTLs treatment. CONCLUSION: YQTLs enhance the binding of GABA to GABABR, thereby activating the pCREB/BDNF signaling pathway, which in turn increases the expression of downstream myelin-associated proteins and promotes remyelination and cognitive function.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Metabolómica , Ratas Sprague-Dawley , Remielinización , Transducción de Señal , Animales , Remielinización/efectos de los fármacos , Remielinización/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Ratas , Masculino , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos
9.
Exp Gerontol ; 189: 112402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484905

RESUMEN

BACKGROUND: This study aimed to investigate the effects of combined alpha-lipoic acid (ALA) and mitoquinone (Mito Q) supplementation on cardiac function and the underlying mechanisms in aged rats with myocardial infarction (MI). METHODS: The aged rats underwent left anterior descending artery (LADA) occlusion for 30 min, followed by reperfusion for 24 h. ALA (100 mg/kg, gavage) and Mito Q (10 mg/kg, IP) were administered daily for two weeks before ischemia. Cardiac function, inflammatory, and apoptotic markers were evaluated 24 h after ischemia. RESULTS: The results of this study indicated that the administration of the combination of ALA and Mito Q significantly improved cardiac function. This improvement was linked to a reduction in the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß (P < 0.001) and apoptotic markers (Bax, caspase-3, and Cyt-c), as well as a decrease in the percentage of TUNEL-positive cells (P < 0.001). CONCLUSION: The study revealed that combined intervention synergistically mitigated cardiac dysfunction by suppressing inflammatory and apoptotic pathways in aged rats with MI. Further research is needed to validate the potential of ALA and Mito Q as therapeutic options for elderly people at risk of heart attacks.


Asunto(s)
Infarto del Miocardio , Compuestos Organofosforados , Ácido Tióctico , Ubiquinona/análogos & derivados , Humanos , Anciano , Ratas , Animales , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Ratas Sprague-Dawley , Infarto del Miocardio/tratamiento farmacológico , Suplementos Dietéticos , Apoptosis
10.
J Ethnopharmacol ; 328: 117974, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38467317

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute alcohol intoxication is one of the leading causes of coma. A well-regarded Chinese herbal formula, known as An-Gong-Niu-Huang-Wan (AGNHW), has garnered recognition for its efficacy in treating various brain disorders associated with impaired consciousness, including acute alcohol-induced coma. Despite its clinical effectiveness, the scientific community lacks comprehensive research on the mechanistic aspects of AGNHW's impact on the electroencephalogram (EEG) patterns observed during alcohol-induced coma. Gaining a deeper understanding of AGNHW's mechanism of action in relation to EEG characteristics would hold immense importance, serving as a solid foundation for further advancing its clinical therapeutic application. AIM OF THE STUDY: The study sought to investigate the impact of AGNHW on EEG activity and sleep EEG patterns in rats with alcoholic-induced coma. MATERIALS AND METHODS: A rat model of alcohol-induced coma was used to examine the effects of AGNHW on EEG patterns. Male Sprague-Dawley rats were intraperitoneally injected with 32% ethanol to induce a coma, followed by treatment with AGNHW. Wireless electrodes were implanted in the cortex of the rats to obtain EEG signals. Our analysis focused on evaluating alterations in the Rat Coma Scale (RCS), as well as assessing changes in the frequency and distribution of EEG patterns, sleep rhythms, and body temperature subsequent to AGNHW treatment. RESULTS: The study found a significant increase in the δ-band power ratio, as well as a decrease in RCS scores and ß-band power ratio after modeling. AGNHW treatment significantly reduced the δ-band power ratio and increased the ß-band power ratio compared to naloxone, suggesting its superior arousal effects. The results also revealed a decrease in the time proportion of WAKE and REM EEG patterns after modeling, accompanied by a significant increase in the time proportion of NREM EEG patterns. Both naloxone and AGNHW effectively counteracted the disordered sleep EEG patterns. Additionally, AGNHW was more effective than naloxone in improving hypothermia caused by acute alcohol poisoning in rats. CONCLUSION: Our study provides evidence for the arousal effects of AGNHW in alcohol-induced coma rats. It also suggests a potential role for AGNHW in regulating post-comatose sleep rhythm disorders.


Asunto(s)
Intoxicación Alcohólica , Coma , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Coma/inducido químicamente , Coma/tratamiento farmacológico , Electroencefalografía , Nivel de Alerta/fisiología , Sueño , Naloxona/farmacología
11.
J Ethnopharmacol ; 328: 118056, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38490287

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Urinary tract infections (UTIs) are globally prevalent infectious diseases, predominantly caused by uropathogenic Escherichia coli (UPEC). The misuse of antibiotics has led to the emergence of several drug-resistant strains. Traditional Chinese Medicine (TCM) has its own advantages in the treatment of UTIs. HJ granules is a herbal formula used for the treatment of UTIs. However, its mechanism of action is not clear. AIM OF THE STUDY: The aim of this study was to investigate the therapeutic efficacy and mechanism of action of HJ granules in a rat model of UTI caused by Escherichia coli (E coli) CFT073. MATERIALS AND METHODS: SD rats were selected to establish a rat UTI model by injecting UPEC strain CFT073 into the bladder using the transurethral placement method. HJ granules were administered to rats after modelling and the efficacy of HJ granule was investigated by measuring urinary decanalogue, inflammatory factors in bladder tissue and pathological changes in the bladder after 3d of administration. Expression of sonic hedgehog (SHH), NOD-like receptor thermoprotein domain 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and activation of cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by western blotting and immunofluorescence staining in rat bladder tissue. NLRP3, ASC and caspase-1, a cysteine-containing aspartic protein, were expressed and activated. RESULTS: The results showed that infection of rats with UPEC resulted in increased pH and erythrocytes in bladder irrigation fluid; increased expression of IL-1ß, IL-6 and SHH and decreased expression of IL-10 in bladder tissue; and significant upregulation of the expression of both SHH and NLRP3 inflammasom and significant activation of NLRP3 inflammasom. HJ granules significantly increased the concentration of IL-10 in the bladder, inhibited the expression of SHH and NLRP3 inflammasom in bladder tissue, and suppressed the activation of NLRP3 inflammasom, thereby reducing inflammatory lesions in bladder tissue. CONCLUSION: HJ granules may improve bladder injury and treat UTIs by inhibiting the expression and activation of NLRP3 inflammasom.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Escherichia coli , Interleucina-10 , Proteínas Hedgehog , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/patología , Ratas Sprague-Dawley , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/patología , Caspasa 1/metabolismo
12.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38492791

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Asunto(s)
Rosa , Ratas , Animales , Serotonina/metabolismo , Irán , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/metabolismo , Transducción de Señal , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sinapsis/metabolismo , Estrés Psicológico/tratamiento farmacológico , Hipocampo , Modelos Animales de Enfermedad
13.
Neuroreport ; 35(6): 343-351, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526969

RESUMEN

Inflammatory pain, the most prevalent disease globally, remains challenging to manage. Electroacupuncture emerges as an effective therapy, yet its underlying mechanisms are not fully understood. This study investigates whether adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-regulated silent information regulator 1 (SIRT1) contributes to electroacupuncture's antinociceptive effects by modulating macrophage/microglial polarization in the spinal dorsal horn of a mouse model of inflammatory pain. In this study, mice, introduced to inflammatory pain through subcutaneous injections of complete freund's adjuvant (CFA) in the plantar area, underwent electroacupuncture therapy every alternate day for 30-min sessions. The assessment of mechanical allodynia and thermal hyperalgesia in these subjects was carried out using paw withdrawal frequency and paw withdrawal latency measurements, respectively. Western blot analysis measured levels of AMPK, phosphorylation-adenosine 5'-monophosphate (AMP)-activated protein kinase, SIRT1, inducible nitric oxide synthase, cluster of differentiation 86, arginase 1, and interleukin 10. In contrast to the group treated solely with CFA, the cohort receiving both CFA and electroacupuncture demonstrated notable decreases in both thermal hyperalgesia and mechanical allodynia. This was accompanied by a marked enhancement in AMPK phosphorylation levels. AMPK knockdown reversed electroacupuncture's analgesic effects and reduced M2 macrophage/microglial polarization enhancement. Additionally, AMPK knockdown significantly weakened electroacupuncture-induced SIRT1 upregulation, and EX-527 injection attenuated electroacupuncture's facilitation of M2 macrophage/microglial polarization without affecting AMPK phosphorylation levels. Furthermore, combining electroacupuncture with SRT1720 enhanced the analgesic effect of SRT1720. Our findings suggest that AMPK regulation of SIRT1 plays a critical role in electroacupuncture's antinociceptive effect through the promotion of M2 macrophage/microglial polarization.


Asunto(s)
Electroacupuntura , Hiperalgesia , Humanos , Ratas , Ratones , Animales , Hiperalgesia/terapia , Hiperalgesia/inducido químicamente , Proteínas Quinasas Activadas por AMP/uso terapéutico , Microglía , Sirtuina 1 , Ratas Sprague-Dawley , Dolor/inducido químicamente , Analgésicos/uso terapéutico , Adenosina , Macrófagos , Inflamación/inducido químicamente
14.
J Ethnopharmacol ; 327: 117989, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38462026

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Massa Medicata Fermentata, a fermented Chinese medicine, is produced by the fermentation of six traditional Chinese medicines. Liu Shenqu (LSQ) and charred Liu Shenqu (CLSQ) have been used for strengthening the spleen and enhancing digestion for over a thousand years, and CLSQ is commonly used in clinical practice. However, it is unclear whether there is a difference in the spleen strengthening and digestion effects between LSQ and CLSQ, as well as their mechanisms of action. AIM OF STUDY: This study aims to compare the effects of LSQ and CLSQ on the digestive function of functional dyspepsia (FD) rats and reveal their mechanisms of action. MATERIALS AND METHODS: SPF grade SD rats were randomly divided into 6 groups: control group, model group, Liu Shenqu decoction low-dosage (LSQ LD) group, Liu Shenqu decoction high-dosage (LSQ HD) group, charred Liu Shenqu decoction low-dosage (CLSQ LD) group, and charred Liu Shenqu decoction high-dosage (CLSQ HD) group. Rats were injected intraperitoneally with reserpine to create an FD model and then treated by intragastric administration. During this period, record the weight and food intake of the animals. After 18 days of treatment, specimens of the gastric antrum, spleen, and duodenum of rats were taken for pathological staining and immunohistochemical detection of Ghrelin protein expression. Enzyme linked immunosorbent assay (ELISA) was used to determine the concentration of relevant gastrointestinal hormones in serum. The 16 S rDNA sequencing method was used to evaluate the effect of cecal contents on the structure of the gut microbiota in experimental rats. Plasma metabolomics analysis was performed using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) to further reveal their mechanism of action. RESULTS: LSQ and CLSQ improved the pathological tissue histological structure of FD rats and increased the levels of MTL and GAS hormones in serum and the levels of ghrelin in the gastric antrum, spleen, and duodenum, while reducing VIP, CCK, and SP hormone levels. The above results showed that the therapeutic efficacy of CLSQ is better than that of LSQ. Futhermore, the mechanism of action of LSQ and CLSQ were revealed. The 16 S rDNA sequencing results showed that both LSQ and CLSQ can improve the composition and diversity of the gut microbiota. And metabolomic analysis demonstrated that 20 metabolites changed after LSQ treatment, and 16 metabolites underwent continuous changes after CLSQ treatment. Further analysis revealed that LSQ mainly intervened in the metabolic pathways of glycerol phospholipid metabolism and arginine and proline metabolism, but CLSQ mainly intervened in the metabolic pathways of ether lipid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. CONCLUSIONS: Both LSQ and CLSQ can improve functional dyspepsia in FD rats, but CLSQ has a stronger improvement effect on FD. Although their mechanisms of action are all related to regulating gastrointestinal hormone secretion, significantly improving intestinal microbiota disorders, and improving multiple metabolic pathways, but the specific gut microbiota and metabolic pathways they regulate are different.


Asunto(s)
Medicamentos Herbarios Chinos , Dispepsia , Microbiota , Ratas , Animales , Ghrelina/uso terapéutico , Dispepsia/tratamiento farmacológico , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metabolómica/métodos , ADN Ribosómico
15.
Toxicon ; 242: 107693, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38519012

RESUMEN

Aconitine is the main active component of Aconitum plants. Although aconitine has effects that include strengthening the heart, analgesia, anti-tumor, and immune-regulating effects, aconitine has both efficacy and toxicity, especially cardiotoxicity. Severe effects can include arrhythmia and cardiac arrest, which limits the clinical application of aconitine-containing traditional Chinese medicine. Ginsenoside Rb1(Rb1) is mainly found in plants, such as ginseng and Panax notoginseng, and has cardiovascular-protective and anti-arrhythmia effects. This study aimed to investigate the detoxifying effects of Rb1 on aconitine cardiotoxicity and the electrophysiological effect of Rb1 on aconitine-induced arrhythmia in rats. Pathological analysis, myocardial enzymatic indexes, and Western blotting were used to investigate the ameliorating effect of Rb1 on aconitine cardiotoxicity. Optical mapping was used to evaluate the effect of Rb1 on action potential and calcium signaling after aconitine-induced arrhythmia. Rb1 inhibited pathological damage caused by aconitine, decreased myocardial enzyme levels, and restored the balance of apoptotic protein expression by reducing the expression of Bax and cleaved caspase 3 and increasing the expression of Bcl-2, thereby reducing myocardial damage caused by aconitine. Rb1 also reduced the increase in heart rate caused by aconitine, accelerated action potential conduction and calcium signaling, and reduced the dispersion of action potential and calcium signal conduction. Rb1 reduced the cardiotoxicity of aconitine by attenuating aconitine-induced myocardial injury and inhibiting the aconitine-induced retardation of ventricular action potential and calcium signaling in rats.


Asunto(s)
Aconitina , Señalización del Calcio , Cardiotoxicidad , Ginsenósidos , Animales , Ginsenósidos/farmacología , Aconitina/análogos & derivados , Cardiotoxicidad/prevención & control , Ratas , Señalización del Calcio/efectos de los fármacos , Masculino , Potenciales de Acción/efectos de los fármacos , Ratas Sprague-Dawley , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/prevención & control , Miocardio/metabolismo , Miocardio/patología
16.
Mol Pain ; 20: 17448069241240692, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38443317

RESUMEN

Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.


Asunto(s)
Dolor en Cáncer , Electroacupuntura , Neoplasias , Neuropéptidos , Ratas , Humanos , Ratones , Animales , Dolor en Cáncer/etiología , Dolor en Cáncer/terapia , Dolor en Cáncer/metabolismo , Nocicepción , Ratones Desnudos , Ratas Sprague-Dawley , Dolor/metabolismo , Hiperalgesia/complicaciones , Hiperalgesia/terapia , Hiperalgesia/inducido químicamente , Analgésicos/metabolismo , Inflamación/metabolismo , Médula Espinal/metabolismo
17.
J Tradit Chin Med ; 44(2): 334-344, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504539

RESUMEN

OBJECTIVE: To explore the mechanism of Dangua Fang (, DGR) in multi-target and multi-method regulation of glycolipid metabolism based on phosphoproteomics. METHODS: Sprague-Dawley rats with normal glucose levels were randomly divided into three groups, including a conventional diet control group (Group A), high-fat-high-sugar diet model group (Group B), and DGR group (Group C, high-fat-high-sugar diet containing 20.5 g DGR). After 10 weeks of intervention, the fasting blood glucose (FBG), 2 h blood glucose [PBG; using the oral glucose tolerance test (OGTT)], hemoglobin A1c (HbA1c), plasma total cholesterol (TC), and triglycerides (TG) were tested, and the livers of rats were removed to calculate the liver index. Then, hepatic portal TG were tested using the Gross permanent optimization-participatiory action planning enzymatic method and phosphoproteomics was performed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis followed by database search and bioinformatics analysis. Finally, cell experiments were used to verify the results of phosphoproteomics. Phosphorylated mitogen-activated protein kinase kinase kinase kinase 4 (MAP4k4) and phosphorylated adducin 1 (ADD1) were detected using western blotting. RESULTS: DGR effectively reduced PBG, TG, and the liver index (P < 0.05), and significantly decreased HbA1c, TC, and hepatic portal TG (P < 0.01), showed significant hematoxylin and eosin (HE) staining, red oil O staining, and Masson staining of liver tissue. The total spectrum was 805 334, matched spectrum was 260 471, accounting for accounting 32.3%, peptides were 19 995, modified peptides were 14 671, identified proteins were 4601, quantifiable proteins were 4417, identified sites were 15 749, and quantified sites were 14659. Based on the threshold of expression fold change ( > 1.2), DGR up-regulated the modification of 228 phosphorylation sites involving 204 corresponding function proteins, and down-regulated the modification of 358 phosphorylation sites involving 358 corresponding function proteins, which included correcting 75 phosphorylation sites involving 64 corresponding function proteins relating to glycolipid metabolism. Therefore, DGR improved biological tissue processes, including information storage and processing, cellular processes and signaling, and metabolism. The metabolic functions regulated by DGR mainly include energy production and conversion, carbohydrate transport and metabolism, lipid transport and metabolism, inorganic ion transport and metabolism, secondary metabolite biosynthesis, transport, and catabolism. In vitro phosphorylation validation based on cell experiments showed that the change trends in the phosphorylation level of MAP4k4 and ADD1 were consistent with that of previous phosphoproteomics studies. CONCLUSION: DGR extensively corrects the modification of phosphorylation sites to improve corresponding glycolipid metabolism-related protein expression in rats with glycolipid metabolism disorders, thereby regulating glycolipid metabolism through a multi-target and multi-method process.


Asunto(s)
Glucemia , Espectrometría de Masas en Tándem , Ratas , Animales , Ratas Sprague-Dawley , Glucemia/metabolismo , Hemoglobina Glucada , Cromatografía Liquida , Hígado , Metabolismo de los Lípidos , Glucolípidos/metabolismo , Glucolípidos/farmacología , Triglicéridos/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Dieta Alta en Grasa
18.
J Tradit Chin Med ; 44(2): 303-314, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504536

RESUMEN

OBJECTIVE: To investigate the impact of Yemazhui (Herba Eupatorii Lindleyani, HEL) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its underlying mechanism in vivo. METHODS: The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method. Then, HEL was found to suppress LPS-induced ALI in vivo. Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups: control, LPS, Dexamethasone (Dex), HEL low dose 6 g/kg (HEL-L), HEL medium dose 18 g/kg (HEL-M) and HEL high dose 54 g/kg (HEL-H) groups. The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model. Leukocyte counts, lung wet/dry weight ratio, as well as myeloperoxidase (MPO) activity were determined followed by the detection with hematoxylin and eosin staining, enzyme linked immunosorbent assay, quantitative real time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. Besides, to explore the effect of HEL on ALI-mediated intestinal flora, we performed 16s rRNA sequencing analysis of intestinal contents. RESULTS: HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance. Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats, inhibited leukocytes exudation and MPO activity, and improved the pathological injury of lung tissue. In addition, HEL reduced the expression of tumor necrosis factor-alpha, interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid and serum, and inhibited nuclear displacement of nuclear factor kappa-B p65 (NF-κBp65). And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88, NF-κBp65, phosphorylated inhibitor kappa B alpha (phospho-IκBα), nod-like receptor family pyrin domain-containing 3 protein (NLRP3), IL-1ß, and interleukin-18 (IL-18) in lung tissue, and regulated intestinal flora disturbance. CONCLUSIONS: In summary, our findings revealed that HEL has a protective effect on LPS-induced ALI in rats, and its mechanism may be related to inhibiting TLR4/ NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.


Asunto(s)
Lesión Pulmonar Aguda , Microbioma Gastrointestinal , Ratas , Masculino , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Lipopolisacáridos/efectos adversos , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Dominio Pirina , ARN Ribosómico 16S , Ratas Sprague-Dawley , Transducción de Señal , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética , Pulmón , Interleucina-6
19.
J Tradit Chin Med ; 44(2): 345-352, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504540

RESUMEN

OBJECTIVE: To explore the effect of acupuncture treatment on cerebral ischaemia-reperfusion injury (CIRI) and reveal the underlying mechanism of the effect based on nuclear receptor coactivator 4 (NCOA4) mediated ferritinophagy. METHODS: Sprague-Dawley male rats were divided into four groups: the sham group, model group, acupuncture group, and sham acupuncture group. After 2 h of middle cerebral artery occlusion (MCAO), reperfusion was performed for 24 h to induce CIRI. The rats were treated with acupuncture at the Neiguan (PC6) and Shuigou (GV26) acupoints. Their neurological function was evaluated by taking their Bederson scores at 2 h after ischaemia and 24 h after reperfusion. Triphenyltetrazolium chloride staining was applied to assess the cerebral infarct volume at 24 h after reperfusion. The malondialdehyde (MDA) and ferrous iron (Fe2+) levels were observed after 24 h of reperfusion using an assay kit. Western blotting was performed to detect the expression of NCOA4 and ferritin heavy chain 1 (FTH1) at 24 h after reperfusion. Moreover, the colocalization of ferritin with neurons, NCOA4 with microtubule-associated protein 1 light chain 3 (LC3), and NCOA4 with ferritin was visualized using immunofluorescence staining. RESULTS: Acupuncture significantly improved neurological function and decreased cerebral infarct volume in the acupuncture group. Following CIRI, the expression of NCOA4, LC3 and FTH1 was increased, which enhanced ferritinophagy and induced an inappropriate accumulation of Fe2+ and MDA in the ischaemic brain. However, acupuncture dramatically downregulated the expression of NCOA4, LC3 and FTH1, inhibited the overactivation of ferritinophagy, and decreased the levels of MDA and Fe2+. CONCLUSIONS: Acupuncture can inhibit NCOA4-mediated ferritinophagy and protect neurons against CIRI in a rat model.


Asunto(s)
Terapia por Acupuntura , Isquemia Encefálica , Daño por Reperfusión , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto Cerebral , Daño por Reperfusión/genética , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Ferritinas/genética , Coactivadores de Receptor Nuclear/metabolismo
20.
J Tradit Chin Med ; 44(2): 353-361, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504541

RESUMEN

OBJECTIVE: To test the hypothesis that moxibustion may inhibit rheumatoid arthritis (RA) synovial inflammation by regulating the expression of macrophage migration inhibitory factor (MIF)/glucocorticoids (GCs). METHODS: Fifty male Sprague-Dawley rats were randomly divided into five groups (n = 10 each): blank Control (CON) group, RA Model (RA) group, Moxibustion (MOX) group, MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) group, and Moxibustion + MIF inhibitor ISO-1 (MOX + ISO-1) group. Rats in the ISO-1 group and ISO-1 + MOX group were intraperitoneally injected with the inhibitor ISO-1. The rats in the RA group, ISO-1 group, MOX group, and ISO-1 + MOX group were injected with Freund's complete adjuvant (FCA) in the right hind footpad to establish an experimental RA rat model. In the MOX group and MOX + ISO-1 group, rats were treated with Moxa. The thickness of the footpads of the rats in each group was measured at three-time points before, after modeling and after moxibustion treatment. The contents of serum MIF, corticosterone (CORT), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected by enzyme-linked immunosorbent assay; and the contents of synovial MIF were detected by Western blot. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes of synovial tissue under a section light microscope, and pathological scoring was performed according to the grading standard of the degree of synovial tissue disease. RESULTS: Moxibustion was found to reduce the level of MIF and alleviate inflammation in RA rats in this study. In addition, after inhibiting the expression of MIF, the level of CORT increased, and the level of TNF-α decreased. Treating RA rats with inhibited MIF by moxibustion, the level of CORT was almost unchanged, but the level of TNF-α further decreased. The correlation analysis data suggested that MIF was positively related to the expression of TNF-α and negatively correlated with the expression of CORT. CONCLUSION: Reducing MIF to increase CORT and decrease TNF-α by moxibustion treatment in RA. MIF may be a factor for moxibustion to regulate the expression of CORT, but the expression of TNF-α is due to the incomplete regulation of the MIF. This study added to the body of evidence pointing to moxibustion's anti-inflammatory mechanism in the treatment of RA.


Asunto(s)
Artritis Reumatoide , Factores Inhibidores de la Migración de Macrófagos , Moxibustión , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Glucocorticoides , Factor de Necrosis Tumoral alfa/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo , Inflamación/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA